- (682) Sample-based planning under differential constraints
- (660) Completeness analysis begins w/considering pts that can be reached by integrating action trajectories
- (661) Have forward a& backward time-reachable sets
- (663) Under differential constraints, sample-based motion planning algs work by sampling the space of action trajectories
- Discrete time model discretizes actions as well(?)
- (664) Reachability trees/graphs
- (665) Merging nodes/structure depends heavily on time discretization
- (666) No guarantee planning will ever end up in same state twice, leading to inneficiency

- (668) Use of motion planning primitives can be modeled as a hybrid system
- (672) Planning using a simulator
- (673) Euler, Runge-Kutta, & other integration approximation methods
- (676) Local planning w/differential constraints is generally very difficult
- Can allow approximate navigation to a point in configuration space
- (689) RDTs were originally designed for planning under differential constraints
- Can be considered a subgraph of the reachability graph under some method of discretization

- (690) Problems of RDTs in differential settings w/obstacles
- Problem as w/ most differential planners is connecting nearby states
- (696) Can try “plan and transform” – plan in a simple case (such as under no differential constraints) and then modify plan if it violates some constraints
- (707) Traj optimization takes an existing traj and optimizes some characteristic of it, can be time to execute a path, or even smoothing out paths that have lots of kinks (such as from RDTs)
- In the general case this is a hard problem

- (708) Can be done by grad descent on cost
- (709) Methods that utilize repeated small perturbations requires integration and collision checking, which can be expensive
- Traj optimization can get stuck in local optima

Advertisements
(function(){var c=function(){var a=document.getElementById("crt-620053064");window.Criteo?(a.parentNode.style.setProperty("display","inline-block","important"),a.style.setProperty("display","block","important"),window.Criteo.DisplayAcceptableAdIfAdblocked({zoneid:388248,containerid:"crt-620053064",collapseContainerIfNotAdblocked:!0,callifnotadblocked:function(){a.style.setProperty("display","none","important");a.style.setProperty("visbility","hidden","important")}})):(a.style.setProperty("display","none","important"),a.style.setProperty("visibility","hidden","important"))};if(window.Criteo)c();else{if(!__ATA.criteo.script){var b=document.createElement("script");b.src="//static.criteo.net/js/ld/publishertag.js";b.onload=function(){for(var a=0;a<__ATA.criteo.cmd.length;a++){var b=__ATA.criteo.cmd[a];"function"===typeof b&&b()}};(document.head||document.getElementsByTagName("head")[0]).appendChild(b);__ATA.criteo.script=b}__ATA.criteo.cmd.push(c)}})();
(function(){var c=function(){var a=document.getElementById("crt-1119699934");window.Criteo?(a.parentNode.style.setProperty("display","inline-block","important"),a.style.setProperty("display","block","important"),window.Criteo.DisplayAcceptableAdIfAdblocked({zoneid:837497,containerid:"crt-1119699934",collapseContainerIfNotAdblocked:!0,callifnotadblocked:function(){a.style.setProperty("display","none","important");a.style.setProperty("visbility","hidden","important")}})):(a.style.setProperty("display","none","important"),a.style.setProperty("visibility","hidden","important"))};if(window.Criteo)c();else{if(!__ATA.criteo.script){var b=document.createElement("script");b.src="//static.criteo.net/js/ld/publishertag.js";b.onload=function(){for(var a=0;a<__ATA.criteo.cmd.length;a++){var b=__ATA.criteo.cmd[a];"function"===typeof b&&b()}};(document.head||document.getElementsByTagName("head")[0]).appendChild(b);__ATA.criteo.script=b}__ATA.criteo.cmd.push(c)}})();